
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING50, 104–122 (1998)
ARTICLE NO. PC981433

Parallel Transient Dynamics Simulations:
Algorithms for Contact Detection and

Smoothed Particle Hydrodynamics

Steve Plimpton,* Steve Attaway,* Bruce Hendrickson,* Jeff Swegle,*
Courtenay Vaughan,* and David Gardner*

Sandia National Labs, Albuquerque, New Mexico 87185-1111

Transient dynamics simulations are commonly used to model phenomena such
as car crashes, underwater explosions, and the response of shipping containers
to high-speed impacts. Physical objects in such a simulation are typically
represented by Lagrangian meshes because the meshes can move and deform
with the objects as they undergo stress. Fluids (gasoline, water) or fluid-like
materials (soil) in the simulation can be modeled using the techniques of
smoothed particle hydrodynamics. Implementing a hybrid mesh/particle model on
a massively parallel computer poses several difficult challenges. One challenge is
to simultaneously parallelize and load-balance both the mesh and particle portions
of the computation. A second challenge is to efficiently detect the contacts that
occur within the deforming mesh and between mesh elements and particles as
the simulation proceeds. These contacts impart forces to the mesh elements and
particles which must be computed at each timestep to accurately capture the physics
of interest. In this paper we describe new parallel algorithms for smoothed particle
hydrodynamics and contact detection which turn out to have several key features in
common. Additionally, we describe how to join the new algorithms with traditional
parallel finite element techniques to create an integrated particle/mesh transient
dynamics simulation. Our approach to this problem differs from previous work
in that we use three different parallel decompositions, a static one for the finite
element analysis and dynamic ones for particles and for contact detection. We
have implemented our ideas in a parallel version of the transient dynamics code
PRONTO-3D and present results for the code running on the Pentium-based Intel
Teraflop machine at Sandia.© 1998 Academic Press

1. INTRODUCTION

Large-scale simulations are increasingly being used to complement or even replace
experimentation in a wide variety of settings within science and industry. Computer

*E-mail: {sjplimp,swattaw,bahendr,jwswegl,ctvaugh,drgardn}@sandia.gov

104

0743-7315/98 $25.00
Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.

PARALLEL TRANSIENT DYNAMICS SIMULATIONS 105

models can provide a flexibility which is difficult to match with experiments and can
be a particularly cost-effective alternative when experiments are expensive or hazardous
to perform. As an example, consider the modeling of crashes and explosions which can
involve the interaction of fluids with complex structural deformations. The simulation of
gas-tank rupture in an automobile crash is a prototypical example.

Transient dynamics codes are able to model the material deformations occurring in
such phenomena, and smoothed particle hydrodynamics (SPH) provides an attractive
method for including fluids in the model. There are several commercial codes which
simulate structural dynamics including LS-DYNA3D, ABACUS, EPIC, and Pam-Crash.
Of these, EPIC is the only one which includes an SPH capability [12]. PRONTO-3D is
a DOE code of similar scope that was developed at Sandia National Laboratories [4, 20,
21] which includes both structural dynamics and SPH models.

A complicated process such as a collision or explosion involving numerous complex
objects requires a mesh with fine spatial resolution if it is to provide accurate modeling.
The underlying physics of the stress–strain relations for a variety of interacting materials
must also be included in the model. Coupling of mechanical and hydrodynamic effects
further increases the complexity. Running such a simulation for thousands or millions of
timesteps can be extremely computationally intensive and so is a natural candidate for
the power of parallel computers.

Unfortunately, these kinds of simulations have resisted large-scale parallelization
for several reasons. First, multiphysics simulations which couple different types of
phenomenological models (e.g., structures and fluids), are often difficult to parallelize. A
strategy which enables efficient parallel execution of one portion of the model may lead
to poor performance of other portions. Second, the problem of contact detection, which
is described in the next section, is central to structural dynamics simulations, but has
resisted efficient parallelization. We believe our parallel algorithm for this computational
task is the first to exhibit good scalability.

In this paper we describe the algorithms we have developed to enable an efficient par-
allel implementation of PRONTO-3D, coupling structural dynamics with SPH. Although
there have been previous attempts to parallelize contact detection and SPH individually,
to our knowledge PRONTO-3D is the first code to parallelize them together. A key idea
in our approach is the use of different parallel decompositions for each of the three dom-
inant computations that occur in a timestep: finite element analysis, SPH calculation,
and contact detection. Although we must communicate information between the differ-
ent decompositions, the cost of doing so turns out to be small and thus is more than
compensated for by the load balance and high parallel efficiency we achieve in each
individual stage. Our development effort has targeted large distributed-memory parallel
supercomputers such as the Intel Paragon and Teraflop and the Cray T3D/E. As such,
parallel PRONTO-3D and the algorithms we describe here are written in portable F77
and C with standard message-passing calls (MPI).

In the next section we present a brief overview of transient dynamics simulations
including SPH. We also introduce our parallelization strategy and contrast it with previous
approaches. We omit a detailed discussion of the numerics of either deformation modeling
or SPH, since this can be found in the references and is beyond the scope of this paper.
In Section 3 we highlight two fundamental operations which serve as building blocks
for our parallel algorithms. These operations are used repeatedly in the parallelization

106 PLIMPTON ET AL.

of SPH in Section 4 and the contact detection task described in Section 5. In an earlier
version of this paper [19] we discussed PRONTO-3D performance on the Intel Paragon.
In Section 6 we present performance results on the new Pentium-based Intel Teraflop
machine.

2. OVERVIEW

Transient structural dynamics models are usually formulated as finite element (FE)
simulations on Lagrangian meshes [11]. Unlike Eulerian meshes which remain fixed in
space as the simulation proceeds, Lagrangian meshes can be easily fitted to complex
objects and can deform with the objects as they change shape during a simulation. The
deformation of an individual mesh element is computed by calculating the material-
dependent stresses and strains imparted by neighboring elements within the topology of
the FE mesh. We term this calculation the FE portion of the transient dynamics simulation.

Smoothed particle hydrodynamics (SPH) models are gridless Lagrangian techniques
used to model regions of extreme deformation where traditional FE meshes become
too distorted and break down [6, 16, 18]. Essentially the material is modeled as a
dense collection of particles. In this setting, the term “hydrodynamics” is somewhat
of a misnomer, since in a transient dynamics code the particles can carry along stress
and strain tensors to model the strength of solid materials as well as liquids. A group of
nearby SPH particles is treated as a collection of interpolation points. Spatial gradients
of various quantities are computed as a sum of pairwise interactions between a particle
and its neighbors and this information is used in material equations-of-state to compute
the forces on individual particles. We term this calculation the SPH portion of a hybrid
particle/mesh transient dynamics simulation.

For illustration purposes, Fig. 1 shows a schematic of a simulation containing both
FE meshes and SPH particles. This is a computation of an airplane wing striking a
stationary pole. These are snapshots from simulations performed by John Pott at Sandia
to understand fuel dispersal in airplane crashes. The wing and pole are modeled with
finite elements; the fuel is modeled as SPH particles. The left snapshot shows the cloud of
fuel surrounding the wing after impact; the right snapshot has the fuel particles removed
to show details of the tearing of the wing.

In most transient dynamics simulations, there is a third major computation which
must be performed every timestep. This is the detection ofcontactsbetween pairs of
unconnected mesh elements and between SPH particles and mesh elements. For example,
in Fig. 2, initial and 5 ms snapshots are shown of a simulation of a steel rod colliding
with a brick wall. Contacts occur any time a surface element on one brick interpenetrates
a surface element on another brick. These contacts impart forces to the impacting objects
which must be included in the equations of motion for the interpenetrating elements.
If SPH particles are included in the model, then contacts also occur whenever an SPH
particle penetrates a surface element of a meshed object. Finding the set of all such
mesh/mesh and particle/mesh contact pairs is termed the contact detection portion of the
simulation.

To achieve high performance on a massively parallel machine with a hybrid particle/
mesh transient dynamics code such as PRONTO-3D all three of the computational tasks
outlined above must be effectively parallelized. We now discuss some of the issues that

PARALLEL TRANSIENT DYNAMICS SIMULATIONS 107

F
IG

.
1.

C
om

bi
na

tio
n

fin
ite

el
em

en
t

an
d

sm
oo

th
ed

pa
rt

ic
le

hy
dr

od
yn

am
ic

s
si

m
ul

at
io

n.
F

IG
.

2.
S

im
ul

at
io

n
of

a
st

ee
lr

od
hi

tti
ng

a
br

ic
k

w
al

l.

108 PLIMPTON ET AL.

FIG. 3. One timestep of a PRONTO-3D calculation.

must be considered in such an effort. Consider a single timestep of the simulation as
outlined in Fig. 3. In Step (1), the FE portion of the timestep is performed. Within a
single timestep in an explicit timestepping scheme, each mesh element interacts with
only the neighboring elements it is connected to within the topology of the FE mesh.
These kinds of FE calculations can be parallelized straightforwardly. This is also true for
implicit schemes if iterative methods are used to solve the resulting matrix equation.
In either case, the key is to assign each processor a small cluster of elements so
that the only interprocessor communication will be the exchange of information on the
cluster boundary with a handful of neighboring processors. It is important to note that
because the mesh connectivity does not change during the simulation (with a few minor
exceptions), astatic decomposition of the elements to processors is sufficient to ensure
good performance. A variety of algorithms and tools have been developed that optimize
this assignment task. For PRONTO-3D we use a software package called Chaco [8] as
a preprocessor to partition the FE mesh so that each processor has an equal number
of elements and interprocessor communication is minimized. Similar FE parallelization
strategies have been used in other transient dynamics codes [10, 14, 15, 17]. In practice,
the resulting FE computations are well load-balanced and scale efficiently (over 90%)
when large meshes are mapped to thousands of processors in PRONTO-3D. The chief
reasons for this are that the communication required by the FE computation islocal in
nature and the quantity of communication required per processor is roughly constant if
the problem size is scaled with the number of processors.

In Step (2), the SPH portion of the timestep is performed. In PRONTO-3D, individual
SPH particles are spheres with a variable smoothing length or radius that can grow or
shrink as the simulation progresses. The details of how SPH particles interact with each
other and how physical quantities such as stresses and forces are derived from these
interactions is beyond the scope of this paper, but the interested reader is referred to
[4] for a description of the SPH formulation within serial PRONTO-3D. For parallelism
considerations, the key concept is that two SPH particles interact if their spheres overlap.
A single SPH particle may interact with several nearby neighbors and with a distant
particle whose radius is large. Thus an efficient parallel implementation of SPH has two
requirements: (1) the number of SPH particles per processor must be balanced, and (2) the
spatial region owned by a processor must be geometrically compact to enable neighbors
to be found quickly and with a minimum of communication. A static decomposition of
particles to processors cannot meet both these demands, since the spatial density of SPH
particles can change quite dramatically over time.

There have been a few implementations of parallel SPH calculations described in the
literature [22, 23], although SPH is more commonly used for astrophysical simulations
than in transient dynamics. The paper by Warren and Salmon gives an excellent overview

PARALLEL TRANSIENT DYNAMICS SIMULATIONS 109

of issues involved in SPH parallelization and discusses their implementation using an oct-
tree approach. This method results in processors owning geometrically compact, although
somewhat irregularly shaped subdomains. We have opted for a different approach in
PRONTO-3D, which is to use recursive coordinate bisectioning (RCB) as a dynamic
decomposition technique for the SPH particles. The technique is detailed in the next
section, but in essence it assigns a simple rectangular subdomain to each processor
which contains an equal number of particles. We use this technique for several reasons
in addition to the fact that it is simpler to implement. First it allows us to take advantage
of the fast sorting and searching routines that are already part of serial PRONTO-3D
that work within a rectangular subdomain to optimize the neighbor finding on a single
processor. It also produces a smaller boundary region with neighboring processors than
does the oct-tree method. Finally, as we shall see in the next sections, the RCB technique
is used for both the SPH and contact detection tasks and thus we can reuse the same
routine for both purposes.

In Step (3) of Fig. 3, the forces previously computed on mesh elements and SPH
particles are used to advance their positions and velocities in time. This step is perfectly
parallel within the context of the separate decompositions for the FE and SPH steps.
In Step (4), the element and particle interpenetrations resulting from Step (3) must be
detected. As illustrated in Fig. 4, several kinds of contacts can occur. In (a), mesh elements
from distant regions of one object may come in contact as when a car fender crumples.
In (b), elements on two separate objects can also contact, as in the bricks simulation
above. Formally, a “contact” is defined as a geometric penetration of acontact surface
(face of a mesh element) by acontact node(corner point of an element). Thus in the 2-D
representation of (c), node B has contacted surface EF and likewise node F has contacted
surface BC. In this context, the centers of SPH particles in PRONTO-3D are treated as
additional contact nodes. Thus, in (d), particle B has contacted the top surface of the
lower object, but particle A has not.

Although in any one timestep only a few contacts typically occur, checking for all
such contacts requires a global search of the simulation domain and in practice can
require 30–50% of the overall CPU time when PRONTO-3D runs on a vector machine
like the Cray Y-MP. This is because, in principle, any contact node and contact surface
can interpenetrate at some time during the simulation. Efficient schemes for spatially
sorting and searching lists of contact nodes and surfaces have been devised to speed this
computation in the serial version of PRONTO-3D [7].

FIG. 4. Various types of mesh/mesh and particle/mesh contacts.

110 PLIMPTON ET AL.

Unfortunately, parallelizing contact detection is problematic. First, in contrast to the
FE portion of the computation, some form ofglobal analysis and communication is now
required. This is because a contact node and surface pair can be owned by any two
processors in the static mesh decomposition described above. Second, load balance is a
serious problem. The contact nodes associated with SPH particles are balanced by the
RCB decomposition described above. However, the contact surfaces and nodes come
from mesh elements that lie on the surface of meshed object volumes and thus comprise
only a subset of the overall FE mesh. Since the static mesh decomposition load-balances
the entire FE mesh, it will not (in general) assign an equal number of contact surfaces
and nodes to each processor. Finally, finding the one (or more) surfaces that a contact
node penetrates requires that the processor who owns the node acquire information about
all surfaces that are geometrically nearby. Since the surfaces and nodes move as the
simulation progresses, we again require a dynamic decomposition technique which results
in a compact subdomain assigned to each processor if we want to efficiently search for
nearby surfaces.

Given these difficulties, how can we efficiently parallelize the task of contact detection?
The most commonly used approach [14, 15, 17] has been to use a single, static
decomposition of the mesh to perform both FE computation and contact detection. At
each timestep, the FE region owned by a processor is bounded with a box. Global
communication is performed to exchange the bounding box’s extent with all processors.
Then each processor sends contact surface and node information to all processors with
overlapping bounding boxes so that contact detection can be performed locally on each
processor. Though simple in concept, this approach is problematic for several reasons.
For general problems it will not load-balance the contact detection because of the surface-
to-volume issue discussed above. This is not as severe a problem in [17] because only
meshes composed of “shell” elements are considered. Since every element is on a surface,
a single decomposition can balance both parts of the computation. However, consider
what happens in Fig. 2 if one processor owns surface elements on two or more bricks.
As those bricks fly apart, the bounding box surrounding the processor’s elements becomes
arbitrarily large and will overlap with many other processor’s boxes. This will require
large amounts of communication and force the processor to search a large fraction of the
global domain for its contacts.

An alternative approach, more similar in spirit to our work and which was developed
concurrently, is described in [10]. This approach uses a different decomposition for
contact detection than for the FE analysis. In their method, they decompose the contact
surfaces and nodes by overlaying a fine 1-D grid on the entire simulation domain and
mapping the contact surfaces and nodes into the 1-D “slices.” Then a variable number of
slices are assigned to each processor so as to load-balance the number of contact elements
per processor. Each processor is responsible for finding contacts within its collection of
slices which it can accomplish by communicating with processors owning adjacent slices.
While this approach is likely to perform better than a static decomposition, its 1-D nature
limits its utility on large numbers of processors. The implementation described in [10]
suffered from some load imbalance on as few as 32 processors of a Cray T3D.

Our approach to parallel contact detection in FE simulations as implemented in
PRONTO-3D has been described in [3, 9]. In this paper we generalize the discussion to
include SPH particles. The key idea is that we use the same RCB approach described

PARALLEL TRANSIENT DYNAMICS SIMULATIONS 111

above to dynamically balance the entire collection of contact nodes and SPH particles
at each timestep as part of Step (4) in Fig. 3. Note however that this is a different
decomposition than used in Step (2) for the SPH particles alone. In other words, the
RCB routine is called twice each timestep, with a different set of input data. The details
of how contacts are detected within the context of this new decomposition are presented
in Section 5.

Once contacts have been detected, restoring or “push-back” forces are computed in Step
(5) that move the interpenetrating mesh elements and particles back to nonpenetrating
positions. This adjustment is performed in Step (6). Both Steps (5) and (6) only work on
the relatively small set of pairs of contact nodes (including SPH particles) and contact
surfaces detected in Step (4). Thus they consume only a small fraction of the timestep
which is dominated by the computations in Steps (1), (2), and (4).

In summary, we have outlined a parallelization strategy for transient dynamics
simulations that uses three different decompositions within a single timestep: a static
FE decomposition of mesh elements, a dynamic SPH-decomposition of SPH particles,
and a dynamic contact-decomposition of contact nodes and SPH particles. In the early
stages of this project we considered other parallelization strategies that were less
complex, such as balancing particles and mesh elements together across processors.
Such approaches have the drawback that they do not load-balance one or more of the
three computational kernels, an effect that is often fatal to scalable performance on large
numbers of processors.

Our final decision to use three separate decompositions was motivated by two additional
considerations. First, the only “overhead” in such a scheme is the cost of moving mesh
and particle data between the decompositions. Once that cost is paid, we have a highly
load-balanced decomposition in which to perform each of the three major computational
stages within a timestep. For PRONTO-3D this data migration cost turned out to be
small in practice. Whether it isalways small is an open question, but we believe
PRONTO-3D is representative of complex multiphysics codes. Second, in each of the
three decompositions we end up reducing the global computational problem to a single-
processor computation that is conceptually identical to the global problem, e.g., find all
contacts or compute all SPH forces within a rectangular subdomain. This allows the
parallel code to reuse the bulk of the intricate serial PRONTO-3D code that performs
those tasks in the global setting. Thus the parallel parts of the new parallel version of
PRONTO-3D simply create and maintain the new decompositions; the transient dynamics
computations are still performed by the original serial code with only minor modifications.

In the following sections we provide more detail as to how these new decompositions
are used to parallelize the SPH and contact-detection computations. But first, in the next
section, we provide a few details about two fundamental operations that are central to
all of the higher level algorithms.

3. FUNDAMENTAL OPERATIONS

Our parallel algorithms for SPH and contact detection involve a number of unstructured
communication steps. In these operations, each processor has some information it wants
to share with a handful of other processors. Although a given processor knows how
much information it will send and to whom, it does not know how much it will receive

112 PLIMPTON ET AL.

FIG. 5. Parallel algorithm for unstructured communication for processorq.

and from whom. Before the communication can be performed efficiently, each processor
needs to know about the messages it will receive. We accomplish this with the approach
sketched in Fig. 5.

In Steps (1)–(3) each processor learns how many other processors want to send it data.
In Step (1) each of theP processors initializes a local copy of aP-length vector with
zeros and stores a 1 in each location corresponding to a processor it needs to send data to.
The MPI operation in Step (2) communicates this vector in an optimal way; processorq
ends up with the sum across all processors of only locationq, which is the total number
of messages it will receive. In Step (4) each processor sends a short message to the
processors it has data for, indicating how much data they should expect. These short
messages are received in Step (5). With this information, a processor can now allocate
the appropriate amount of space for all the incoming data and post receive calls which
tell the operating system where to put the data once it arrives. After a synchronization
in Step (7), each processor can now send its data. The processor can proceed once it has
received all its data.

Another low-level operation used to create both our SPH and contact decompositions
is recursive coordinate bisectioning (RCB). Initially each processor owns a few “points”
which may be scattered anywhere in the domain; in PRONTO-3D the “points” can be
SPH particles or corner nodes of finite elements. The RCB operation repeatedly divides
or cuts the set of points along coordinate axes into two subsets until each processor owns
a small regular parallelepiped containing an equal fraction of points.

The RCB algorithm was first proposed as a static technique for partitioning unstructured
meshes [5]. Although for static partitioning it has been eclipsed by better approaches,
RCB has a number of attractive properties as a dynamic partitioning scheme [13]. The
subdomains produced by RCB are geometrically compact and well shaped. The algorithm
can also be parallelized in a fairly inexpensive manner. And it has the attractive property
that small changes in the positions of the points being balanced induce only small changes
in the partitions. Most partitioning algorithms do not exhibit this behavior.

Table 1 illustrates the speed and scalability of the RCB operation. The time to
decompose a 3-D collection ofN points on P processors is shown. The times given
are an average of ten calls to the RCB routine; between invocations of RCB the points
are randomly moved a distance up to 10% of the diameter of the global domain to mimic
the motion of finite elements or SPH particles in a real PRONTO-3D simulation. For

PARALLEL TRANSIENT DYNAMICS SIMULATIONS 113

Table 1

CPU Seconds to Perform an RCB Decomposition on Varying Numbers of PointsN

Using Different Numbers of ProcessorsP on the Intel Paragon

N P = 16 P = 32 P = 64 P = 128 P = 256 P = 512

104 0.033 0.026 0.025 0.024 0.027 0.030

105 0.220 0.191 0.138 0.095 0.067 0.056

106 2.884 1.923 1.195 0.810 0.510 0.329

107 — — — 8.713 5.007 3.096

fixed P, as the problem sizeN is increased, the timings show linear scaling once the
problem size is larger than about 100 particles per processor. For fixedN, as more
processors are used the scaling is not as optimal, but the amount of work performed
by the RCB operation is also logarithmic in the number of processors. For example,
running RCB on 32 processors means each processor participates in five cuts to create
its subdomain; forP = 512, each processor participates in nine cuts. The bottom line
for using RCB in PRONTO-3D as a decomposition tool is that its per timestep cost
must be small compared to the computational work (e.g., SPH particle interaction or FE
contact detection) that will be performed within the new decomposition. As we shall see
in Section 6, this is indeed the case.

4. PARALLEL SMOOTHED PARTICLE HYDRODYNAMICS

Our parallel algorithm for the SPH portion of the global timestep (Step (2) of Fig. 3)
is outlined in Fig. 6. Since the SPH particles have moved during the previous timestep,
we first rebalance the assignment of SPH particles to processors by performing an RCB
operation in Step (1). This results in a new SPH decomposition where each processor
owns an equal number of SPH particles contained in a geometrically compact subdomain.
This will load-balance the SPH calculations which follow and enable the neighbors of
each particle to be efficiently identified.

Once the RCB operation is complete, in Step (2) we send full information about only
those SPH particles that migrated to new processors during the RCB operation to the
new owning processors. This is a much larger set of information (about 50 quantities per

FIG. 6. A parallel algorithm for smoothed particle hydrodynamics.

114 PLIMPTON ET AL.

particle) than was stored with the RCB “points” in Step (1). Step (2) uses the unstructured
communication operations detailed in the previous section and is cheap because only a
small fraction of the particles move to new processors in any one timestep.

The geometry of the SPH decomposition can be represented as a set ofP − 1 cuts,
where P is the number of processors. One of these cuts is stored by each processor as
the RCB operations are carried out. In Step (3) we communicate this cut information so
that every processor has a copy of the entire set of cuts. This is done optimally via an
MPI allgather operation.

Before the SPH calculations can be performed, each processor must know about nearby
particles that overlap its subdomain and are thus potential neighbors of its own particles.
This information is acquired in Steps (4) and (5). First in Step (4), each processor checks
which of its SPH particles extend beyond its subdomain. For those that do, a list of
processors whose subdomain is overlapped is created. This is done using the RCB vector
of cuts created in Step (3). The information in this vector enables a processor to know
the bounds of the subdomains owned by every other processor. In Step (5) needed data
for overlapping SPH particles is communicated to the appropriate processors.

Now we are ready to begin computing SPH interactions. As indicated earlier, this
consists of two kinds of computations. First, in Step (6), pairwise interactions are
computed between all pairs of particles which overlap. Each processor determines the
interacting neighbors for each of its owned particles. Then the interactions are computed
for each pair. This is done in exactly the same way as in the serial PRONTO-3D code
(including the sorts and searches for neighbors) with one important exception. It is
possible that a pair of interacting particles will be owned by 2 or more processors after
extra copies of particles are communicated in Step (5). Yet we want to ensure that exactly
one processor computes the interaction between that pair of particles. We enforce this
by defining a unique point, which we call the center-of-interaction (COI) between two
spheres A and B. Letx be the point within A which is closest to the center of B, and
let y be the point within B which is closest to the center of A. The COI of A and B is
(x + y)/2. A processor computes a pairwise interaction if and only if the COI for that
pair is within its subdomain.

This is illustrated in Fig. 7 for two kinds of cases. In the upper example two particles
are owned by processors responsible for neighboring subdomains. After Step (5), both
processors will own copies of both particles. However, only processor 0 will compute
the pairwise interaction of the particles since the COI for the pair is within processor
0’s subdomain. The lower example illustrates a case where processors 0 and 2 own the
particles but the COI is on processor 1. Thus only processor 1 will compute the pairwise
interaction for those particles. Note that this methodology adds only a tiny check (for
the COI criterion) to the serial SPH routines and allows us to take full advantage of
Newton’s 3rd law so that the minimal number of pairwise interactions are computed.

When Step (6) is complete, as a result of computing the pairwise interactions
based on the COI criterion, the processor owning a particular particle may not have
accumulated the entire set of pairwise contributions to that particle, since some of the
contributions may have been computed by other processors. In Step (7) these contri-
butions are communicated to the processors who actually own the particles within the
SPH-decomposition. Then in Step (8) each processor can loop over its particles to
compute their equations-of-state and the total force acting on each particle.

PARALLEL TRANSIENT DYNAMICS SIMULATIONS 115

FIG. 7. (Top) A pair of SPH particles owned by two processors whose COI, shown by an “x” is owned by
the left processor. (Bottom) A pair of SPH particles owned by two processors whose COI is owned by neither.

In actuality, Steps (5)–(8) are iterated on several times in PRONTO-3D [4] to compute
necessary SPH quantities in the proper sequence. From a parallel standpoint however,
the calculations are as outlined in Fig. 6: communication of neighbor information,
followed by pairwise computations, followed by reverse communication, followed by
particle updates.

In summary, Steps (2) and (4) require unstructured communication of the kind outlined
in Fig. 5. Steps (1), (2), (5), and (7) are also primarily devoted to communication. Steps
(6) and (8) are solely on-processor computation. They invoke code which is only slightly
modified from the serial version of PRONTO-3D. This is because the SPH-decomposition
produced in Step (1) reformulated the global SPH problem in a self-similar way: compute
interactions between a group of particles contained in a box.

5. PARALLEL CONTACT DETECTION ALGORITHM

Our parallel algorithm for the contact detection portion of the global timestep (Step
(4) of Fig. 3) is sketched in Fig. 8. It uses some of the same low-level operations as our
SPH algorithm, but in different ways. Recall that for load-balancing purposes we desire a
decomposition of all objects that will potentially come in contact (contact nodes, contact
surfaces, and SPH particles) that is different than the FE and SPH decompositions. In
Step (1), the current position of each contact node is communicated by the processor
who owns and updates it in the FE decomposition to the processor who owned that node
in the contact decomposition of the previous timestep. (On the first timestep this step
is simply skipped.) Likewise current SPH particle positions are communicated from the
current SPH decomposition to the processors who owned the SPH particles in the contact
decomposition of the previous timestep. Both of these operations involve unstructured
communication as detailed in Section 3. The purpose of Step (1) is to give the contact
decomposition a starting point that is close to the correctly balanced answer, since the
finite elements and SPH particles do not move far in any one timestep. In Step (2) we

116 PLIMPTON ET AL.

FIG. 8. A parallel algorithm for contact detection.

perform an RCB operation as described in Section 3 on the combined set of contact
nodes and SPH particles, based on their current positions.

Once the RCB operation is complete, in step (3) we send full information about the
contact nodes and SPH particles to their new contact-decomposition owners. This is a
much larger set of information than was sent in Step (1) and we delay its sending until
after the RCB operation for two reasons. First, it does not have to be carried along as
“points” migrate during the RCB stages. More importantly, in Step (3) we also send
contact surface information to processors in the new contact decomposition by assigning
each contact surface to the contact decomposition processor who owns one (or more) of
the four contact nodes that form the surface. By delaying the sending of contact surfaces
until Step (3), the surfaces do not have to be included in the RCB operation.

Once Step (3) is finished, a new contact decomposition has been created. Each pro-
cessor owns a compact geometric subdomain containing equal numbers of contact nodes
and SPH particles. This is the key to load-balancing the contact detection that will follow.
Additionally each processor in the new decomposition owns some number of contact
surfaces.

Steps (4)–(6) are similar to Steps (3)–(5) in the SPH algorithm. The only difference is
that now contact surfaces are the objects that overlap into neighboring subdomains and
must be communicated to nearby processors since they may come in contact with the
contact nodes and SPH particles owned by those processors. The extent of this overlap is
computed by constructing a bounding box around each contact surface that encompasses
the surface’s zone of influence.

In Step (7) each processor can now find all the node/surface and particle/surface
contacts that occur within its subdomain. Again, a nice feature of our algorithm is that this
detection problem is conceptually identical to the global detection problem we originally
formulated, namely to find all the contacts between a group of surfaces, nodes, and
particles bounded by a box. In fact, in our contact algorithm each processor calls the
original unmodified serial PRONTO-3D contact detection routine to accomplish Step (7).
This enables the parallel code to take advantage of the special sorting and searching
features the serial routine uses to efficiently find contact pairs [7]. It also means we did
not have to recode the complex geometry equations that compute intersections between
moving 3-D surfaces and points! Finally, in Step (8), information about discovered
contacts is communicated back to the processors who own the contact surfaces and
contact nodes in the FE decomposition and who own the SPH particles in the SPH

PARALLEL TRANSIENT DYNAMICS SIMULATIONS 117

decomposition. Those processors can then perform the appropriate force calculations and
element/particle push-back in Steps (5) and (6) of Fig. 3.

In summary, Steps (1), (3), (6), and (8) all involve unstructured communication of
the form outlined in Fig. 5. Steps (2) and (4) also consist primarily of communication.
Steps (5) and (7) are solely on-processor computation.

6. RESULTS

In this section we present timings for PRONTO-3D running on the Intel Paragon and
Teraflop machines at Sandia. The latter has 4500 computational nodes, each of which
has 128 MB of memory and two commodity 200 MHz Pentium-Pro processors [1]. The
nodes are configured in a 2-D mesh with a proprietary communication network that
supports 350 MB/s bandwidth between nodes (in the limit of long messages) with 20–
30 µs latencies.

Figure 9 shows the results of a parallel PRONTO-3D simulation of a steel shipping
container being crushed due to an impact with a flat inclined wall. The front of the
figure is a symmetry plane; actually only one half of the container is simulated. As the
container crumples, numerous contacts occur between layers of elements on the folding
surface. We have used this problem to test and benchmark the implementations of our
parallel FE analysis and contact detection algorithms in PRONTO-3D.

The first set of timing results we present is for a fixed-size problem containing 7152
finite elements. Both the container and wall were meshed three elements thick, so roughly
2/3 of the elements are on a surface. Since each surface element contributes both a surface
and node; there were about 9500 contact surfaces and nodes in the problem. The average
CPU time per timestep for simulating this problem on various numbers of Intel Paragon
processors from 4 to 128 is shown in Fig. 10. Whether in serial or parallel, PRONTO-3D
spends virtually all of its time for this calculation in two portions of the timestep—FE
computation and contact detection. For this problem, both portions of the code speed-up
adequately on small numbers of processors, but begin to fall off when there are only a
few dozen elements per processor.

Figure 11 shows performance on a scaled version of the crush simulation where the
container and wall are meshed more finely as more processors are used. On one processor
a 1875-element model was run. Each time the processor count was doubled, the number
of finite elements was also doubled by refining the mesh in a given dimension. Thus
the leftmost data points are for a 3750 element simulation running on two processors;
the rightmost points are for a 6.57 million element simulation on 3504 processors of the
Intel Teraflop machine. The topmost curve in Fig. 11 is the total CPU time per timestep
averaged over a 100µs (physical time) run. On the small problems this is a few hundred
timesteps; on the large problems it is several thousand, since the timestep size must shrink
as the mesh is refined. The lower curve is the portion of time spent in the FE computation.
Contact detection is the time between the lower and middle curves. Additional overhead,
including the contact push-back, is the time between the top two curves.

In contrast to the previous graph, we now see excellent scalability to thousands of
processors. Linear speed-up would be horizontal lines on this plot; the FE computation
scales nearly perfectly. Contact detection consumes a roughly constant fraction of the
time for all runs. The variations in these times are primarily due to the changing surface-

118 PLIMPTON ET AL.

F
IG

.
9.

S
im

ul
at

io
n

of
a

cr
us

he
d

sh
ip

pi
ng

co
nt

ai
ne

r
fr

om
in

iti
al

im
pa

ct
to

fin
al

st
at

e
af

te
r

3.
2

m
s.

F
IG

.
12

.
M

ix
ed

F
E

/S
P

H
si

m
ul

at
io

n
of

a
pe

ne
tr

at
or

st
rik

in
g

a
ta

rg
et

.

PARALLEL TRANSIENT DYNAMICS SIMULATIONS 119

FIG. 10. Average CPU time per timestep to crush a container with 7152 finite elements on the Intel Paragon.
The dotted line denotes perfect speed-up.

to-volume ratios of mesh elements as refinement is done in different dimensions. The total
CPU time begins to rise in a nonscalable way on the largestP = 2048 andP = 3504
runs because the normally small push-back computation becomes somewhat unbalanced
on very large numbers of processors.

A few comments about raw performance on the Teraflop machine are in order. The
horizontal axis in Fig. 11 actually represents “nodes” of the machine, not processors. As
mentioned above, each computational node on the Teraflop has two Pentium processors,
but the second “co”-processor cannot be used directly without special nonportable coding.
The FE kernels in PRONTO-3D, represented by the lower curve in Fig. 11, were modified

FIG. 11. Average CPU time per timestep on the Intel Teraflop machine to crush a container meshed at
varying resolutions. The mesh size is 1875 finite elements per processor at every data point. The lower curve
is finite element computation time; the middle curve includes both FE and contact detection time; the upper
curve is total CPU time including contact push-back.

120 PLIMPTON ET AL.

Table 2

Breakdown of CPU Seconds per Timestep to Perform a Fixed-Size Penetrator Simulation

on Different Numbers of ProcessorsP of the Intel Teraflop Machine

P FE SPH Contacts Total Speed-up

64 0.409 4.55 1.24 6.27 1.00

128 0.191 2.36 0.715 3.30 1.90

256 0.102 1.30 0.533 1.97 3.19

512 0.0525 0.708 0.334 1.11 5.65

1024 0.0303 0.423 0.238 0.704 8.90

and tuned by Ted Barragy of Intel to run in co-processor mode on the Teraflop at about
120 Mflops on a single node. The majority of the remaining time for contact search is
primarily integer-based searching and sorting. Even with this non-floating-point overhead
however, the aggregate flop-rate on the 3504-node, 6.57 million element run still reached
76 Gflops. A larger version of the container crush problem with 13.8 million elements
ran at a sustained rate of 120 Gflops on 3600 computational nodes of the machine. These
numbers formed the basis of a performance entry that was a finalist in the 1997 Gordon
Bell competition at last years Supercomputing ’97 conference [2]. More importantly, for
the analysts who use PRONTO-3D, a two-processor Teraflop node is now nearly as fast
as a single processor of a Cray Jedi machine running a version of PRONTO-3D optimized
for that platform. Thus the Teraflop machine can perform simulations thousands of times
faster than they could be performed previously on traditional vector processors.

The final set of timing results are for a parallel PRONTO-3D simulation of a metal
penetrator impacting a target at approximately 700 ft/s. These are simulations performed
by Kurt Metzinger at Sandia. The complex geometry of the penetrator is modeled
with 155,000 finite elements; the target is modeled with 415,000 SPH particles since
it undergoes large deformations during the impact. Figure 12 shows a cutaway view
after the penetrator has nearly passed through the target. Timing data for this fixed-
size problem running on the Intel Teraflop is shown in Table 2 on varying numbers of
processors. Average per-timestep timings are shown for the FE computation, the SPH
computation, and the contact detection which in this case includes both mesh–mesh and
mesh–particle contacts.

Due to memory limitations the smallest number of processors (again, actually nodes)
this problem could be run on was 64. The last column in the table indicates the speed-up
relative to the 64-processor run as a baseline. The timing data shows that PRONTO-
3D is maintaining scalable performance for hybrid FE/SPH problems where all three
decompositions are active every timestep.

7. CONCLUSIONS

We have described the parallelization of the multi-physics code PRONTO-3D, which
combines transient structural dynamics with smoothed particle hydrodynamics to simulate
complex impacts and explosions in coupled structure/fluid models. Our parallel strategy
uses different decompositions for each of the three computationally dominant stages,

PARALLEL TRANSIENT DYNAMICS SIMULATIONS 121

allowing each to be parallelized as efficiently as possible. This strategy has proven
effective in enabling PRONTO-3D to be run scalably on up to thousands of processors
of the Intel Paragon and Teraflop machines.

We use a static decomposition for finite element analysis and a dynamic, geometric
decomposition known as recursive coordinate bisectioning for SPH calculations and
contact detection. RCB has the attractive property of responding incrementally to small
changes in the problem geometry, which limits the amount of data transferred in updating
the decomposition. Our results indicate that the load balance we achieve in this way more
than compensates for the cost of the communication required to transfer data between
decompositions.

One potential concern about using multiple decompositions is that mesh and particle
data may be duplicated, consuming large amounts of memory. We reduce this problem
by using a dynamic decomposition of the SPH particles, so that each particle is only
stored once (although the processor which owns it may change over time). However,
we do suffer from data duplication in the contact detection portion of the code both for
contact surfaces and nodes and for SPH particles. This has not been a major bottleneck
for us because the duplication is only for surface elements of the volumetric meshes and
because we are typically computationally bound, not memory bound, in the problems
that we run with PRONTO-3D.

ACKNOWLEDGMENTS

This work was performed at Sandia National Laboratories which is operated for the Department of Energy
under Contract DE-AL04-94AL8500. The work was partially supported under the Joint DOD/DOE Munitions
Technology Development Program and sponsored by the Office of Munitions of the Secretary of Defense.

REFERENCES

1. WWW address: http://mephisto.ca.sandia.gov/TFLOP/sc96/index.html.

2. S. Attaway, T. Barragy, K. Brown, D. Gardner, B. Hendrickson, S. Plimpton, and C. Vaughan, Transient
solid dynamics simulations on the Sandia/Intel teraflop computer,in “Proc. Supercomputing ’97,” ACM/
IEEE, New York, November 1997.

3. S. Attaway, B. Hendrickson, S. Plimpton, D. Gardner, C. Vaughan, M. Heinstein, and J. Peery, Parallel
contact detection algorithm for transient solid dynamics simulations using PRONTO3D,in “Proc. ASME
Intl. Mech. Eng. Congress & Exposition,” ASME, November 1996.

4. S. W. Attaway, M. W. Heinstein, and J. W. Swegle, Coupling of smooth particle hydrodynamics with the
finite element method,Nuclear Engrg. Design150 (1994), 199–205.

5. M. J. Berger and S. H. Bokhari, A partitioning strategy for nonuniform problems on multiprocessors,
IEEE Trans. Comput.C-36 (1987), 570–580.

6. R. A. Gingold and J. J. Monaghan, Kernel estimates as a basis for general particle methods in
hydrodynamics,J. Comput. Phys.46 (1982), 429–453.

7. M. W. Heinstein, S. W. Attaway, F. J. Mello, and J. W. Swegle, “A General-Purpose Contact Detection
Algorithm for Nonlinear Structural Analysis Codes,” Technical Report SAND92-2141, Sandia National
Laboratories, Albuquerque, NM, 1993.

8. B. Hendrickson and R. Leland, “The Chaco User’s Guide: Version 2.0,” Technical Report SAND94-
2692, Sandia National Labs, Albuquerque, NM, June 1995.

9. B. Hendrickson, S. Plimpton, S. Attaway, C. Vaughan, and D. Gardner, A new parallel algorithm for
contact detection in finite element methods,in “Proc. High Perf. Comput. ’96,” Soc. Comp. Simulation,
April 1996.

122 PLIMPTON ET AL.

10. C. G. Hoover, A. J. DeGroot, J. D. Maltby, and R. D. Procassini,Paradyn: Dyna3d for Massively Parallel

Computers, October 1995. Presentation at Tri-Laboratory Engineering Conference on Computational
Modeling.

11. T. J. R. Hughes, “The Finite Element Method—Linear Static and Dynamic Finite Element Analysis,”
Prentice Hall, Englewood Cliffs, NJ, 1987.

12. G. R. Johnson, E. H. Petersen, and R. A. Stryk, Incorporation of an SPH option in the EPIC code for a
wide range of high velocity impact computations,Internat. J. Impact Engrg.14 (1993), 385–394.

13. M. Jones and P. Plassman, Computational results for parallel unstructured mesh computations,Comput.
Systems Engrg.5 (1994), 297–309.

14. G. Lonsdale, J. Clinckemaillie, S. Vlachoutsis, and J. Dubois, Communication requirements in parallel
crashworthiness simulation,in “Proc. HPCN’94,” Lecture Notes in Computer Science, Vol. 796, pp.
55–61, Springer-Verlag, Berlin/New York, 1994.

15. G. Lonsdale, B. Elsner, J. Clinckemaillie, S. Vlachoutsis, F. de Bruyne, and M. Holzner, Experiences
with industrial crashworthiness simulation using the portable, message-passing PAM-CRASH code,in

“Proc. HPCN’95,” Lecture Notes in Computer Science, Vol. 919, pp. 856–862, Springer-Verlag, Berlin/
New York, 1995.

16. L. B. Lucy, A numerical approach to the testing of the fission hypothesis,Astro. J.82 (1977), 1013–1024.

17. J. G. Malone and N. L. Johnson, A parallel finite element contact/impact algorithm for non-linear explicit
transient analysis: Part II—parallel implementation,Internat. J. Numer. Methods Engrg.37 (1994), 591–
603.

18. J. J. Monaghan, Why particle methods work,SIAM J. Sci. Statist. Comput.3 (1982), 422–433.

19. S. Plimpton, S. Attaway, B. Hendrickson, J. Swegle, C. Vaughan, and D. Gardner, Transient dynamics
simulations: Parallel algorithms for contact detection and smoothed particle hydrodynamics,in “Proc.
Supercomputing ’96,” ACM/IEEE, New York, November 1996.

20. J. W. Swegle and S. W. Attaway, On the feasibility of using smoothed particle hydrodynamics for
underwater explosion calculations,Comput. Mech.17 (1995), 151–168.

21. L. M. Taylor and D. P. Flanagan, “Update of PRONTO-2D and PRONTO-3D Transient Solid Dynamics
Program,” Technical Report SAND90-0102, Sandia National Laboratories, Albuquerque, NM, 1990.

22. T. Theuns and M. E. Rathsack, Calculating short range forces on a massively parallel computer: SPH on
the connection machine,Comput. Phys. Comm.76 (1993), 141–158.

23. M. S. Warren and J. K. Salmon, A portable parallel particle program,Comput. Phys. Comm.87 (1995),
266–290.

Received April 1, 1997; accepted November 1, 1997

